Here are the Analysis of rare coding variants in 470,000 exome-sequenced subjects characterises contributions to risk of type 2 diabetes journals presenting the latest research across various disciplines. From social sciences to technology, each article is expected to provide valuable insights to our readers.
Anysis fam, rare and low frequency coding variants, ansys software, association tests for rare variants, rare and low frequency coding, baddeley research on coding, rare and low frequency coding, analysis of d q small signal, common variants vs rare variants, different version of rare.
Analysis of rare coding variants in 470,000 exome-sequenced subjects characterises contributions to risk of type 2 diabetes
Aims To follow up results from an earlier study using an extended sample of 470,000 exome-sequenced subjects to identify genes associated with type 2 diabetes (T2D) and to characterise the distribution of rare variants in these genes. Materials and methods Exome sequence data for 470,000 UK Biobank participants was analysed using a combined phenotype for T2D obtained from diagnostic and prescription data. Gene-wise weighted burden analysis of rare coding variants in the new cohort of 270,000 samples was carried out for the 32 genes previously significant with uncorrected p < 0.001 along with 7 other genes previously implicated in T2D. Follow-up studies of GCK, GIGYF1, HNF1A and HNF4A used the full sample of 470,000 to investigate the effects of different categories of variant. Results No novel genes were identified as exome wide significant. Rare loss of function (LOF) variants in GCK exerted a very large effect on T2D risk but more common (though still very rare) nonsynonymo us variants classified as probably damaging by PolyPhen on average approximately doubled risk. Rare variants in the other three genes also had large effects on risk. Conclusions In spite of the very large sample size, no novel genes are implicated. Coding variants with an identifiable effect are collectively too rare be generally useful for guiding treatment choices for most patients. The finding that some nonsynonymous variants in GCK affect T2D risk is novel but not unexpected and does not have obvious practical implications. This research has been conducted using the UK Biobank Resource. © 2024 David Curtis. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Authors : Curtis D.
Source : Public Library of Science
Article Information
| Year | 2024 |
| Type | Article |
| DOI | 10.1371/journal.pone.0311827 |
| ISSN | 19326203 |
| Volume | 19 |
You can download the article here
If You have any problem, contact us here